Anti-aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations

نویسندگان

  • Ian James Martins
  • Edith Cowan
چکیده

Appetite regulation by nutritional intervention is required early in life that involves the anti-aging gene Sirtuin 1 (Sirt 1) with Sirt 1 maintenance of other cellular anti-aging genes involved in cell circadian rhythm, senescence and apoptosis. Interests in anti-aging therapy with appetite regulation improve an individual’s survival to metabolic disease induced by gene-environment interactions by maintenance of the anti-aging genes connected to the metabolism of bacterial lipopolysaccharides, drugs and xenobiotics. Interventions to the aging process involve early calorie restriction with appetite regulation connected to appropriate genetic mechanisms that involve mitochondrial biogenesis and DNA repair in neurons. In the aging process as the anti-aging genes are suppressed as a result of transcriptional dysregulation chronic disease accelerations and connected to insulin resistance, non-alcoholic fatty liver disease (NAFLD) and neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. Interests in the gene-environment interaction indicate that the anti-aging gene Sirt 1that regulates food intake has been repressed early in the aging process in various global populations. The connections between Sirt 1 and other anti-aging genes such as Klotho, p66Shc (longevity protein) and Forkhead box proteins (FOXO1/ FOXO3a) have been associated with programmed cell death and alterations in these anti-aging genesregulate glucose, lipid and amyloid beta metabolism that are important to various chronic diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effects of Thymoquinone against Methotrexate-Induced Germ Cell Apoptosis in Male Mice

Background Toxic effects of anti-cancer and other drugs on the normal tissues could be reduced by the herbal plants and their fractions. This study investigated the protective effect of thymoquinone (TQ) as a fraction of Nigella sativa on methotrexate (MTX)- induced germ cell apoptosis in male mice. MaterialsAndMethods In this experimental study, thirty male Balb/c mice were divided randomly in...

متن کامل

Functional and gene expression analysis of hTERT overexpressed endothelial cells

Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT) overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endotheli...

متن کامل

The Lcn2-engineered HEK-293 cells show senescence under stressful condition

Objective(s): Lipocalin2 (Lcn2) gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism. Recently it was shown that Lcn2 decreases senescence and increases proliferation of mesenchymal stem cells (MSC...

متن کامل

Epigallocatechin-3-Gallate Induces Apoptosis through Up-regulation of Bax and Down-regulation of Bcl-2 in Prostate Cancer Cell Line

Background and Aims: Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound from green tea, which its anticancer effects on many types of cancers have been confirmed, but the molecular mechanism by which EGCG induces apoptosis remains unknown. The aim of the present study was to investigate anti-proliferative properties and apoptotic signaling pathway of EGCG on PC3 human prostate cancer ...

متن کامل

Apoptosis induction in acute promyelocytic leukemia cells through upregulation of CEBPα by miR-182 blockage

MicroRNAs (miRNAs) involved in regulation of the genes. The CCAAT/enhancer-binding protein-α (CEBPα) is a crucial transcription factor for normal hematopoiesis and cell cycle that frequently disrupted in human acute myeloid leukemia (AML). The miR-182 up-regulation in several malignant diseases such as AML was reported, in the other hand bioinformatics analysis revealed CEBPα targeted by miR-18...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016